Adaptive response in human blood lymphocytes exposed to non-ionizing radiofrequency fields: resistance to ionizing radiation-induced damage
نویسندگان
چکیده
The aim of this preliminary investigation was to assess whether human peripheral blood lymphocytes which have been pre-exposed to non-ionizing radiofrequency fields exhibit an adaptive response (AR) by resisting the induction of genetic damage from subsequent exposure to ionizing radiation. Peripheral blood lymphocytes from four healthy donors were stimulated with phytohemagglutinin for 24 h and then exposed for 20 h to 1950 MHz radiofrequency fields (RF, adaptive dose, AD) at an average specific absorption rate of 0.3 W/kg. At 48 h, the cells were subjected to a challenge dose (CD) of 1.0 or 1.5 Gy X-irradiation (XR, challenge dose, CD). After a 72 h total culture period, cells were collected to examine the incidence of micronuclei (MN). There was a significant decrease in the number of MN in lymphocytes exposed to RF + XR (AD + CD) as compared with those subjected to XR alone (CD). These observations thus suggested a RF-induced AR and induction of resistance to subsequent damage from XR. There was variability between the donors in RF-induced AR. The data reported in our earlier investigations also indicated a similar induction of AR in human blood lymphocytes that had been pre-exposed to RF (AD) and subsequently treated with a chemical mutagen, mitomycin C (CD). Since XR and mitomycin-C induce different kinds of lesions in cellular DNA, further studies are required to understand the mechanism(s) involved in the RF-induced adaptive response.
منابع مشابه
Radio-adaptive response of peripheral blood lymphocytes following bystander effects induced by preirradiated CHO-K1 cells using the micronucleus assay
Background: Radio-adaptive response and bystander effects are known phenomena occurring in cells following exposure to ionizing radiation (IR). In this study we examined possible radio-adaptation of lymphocytes following bystander effects induced by CHO-K1 cells. Materials and Methods: Whole blood and CHO-K1 cells were cultured in RPMI-1640 complete medium. Cells were separately irradiated with...
متن کاملAdaptive Response in Mice Exposed to 900 MHz Radiofrequency Fields: Primary DNA Damage
The phenomenon of adaptive response (AR) in animal and human cells exposed to ionizing radiation is well documented in scientific literature. We have examined whether such AR could be induced in mice exposed to non-ionizing radiofrequency fields (RF) used for wireless communications. Mice were pre-exposed to 900 MHz RF at 120 µW/cm(2) power density for 4 hours/day for 1, 3, 5, 7 and 14 days and...
متن کاملAssessment of Adaptive Response of Gamma Radiation in the Operating Room Personnel Exposed to Anesthetic Gases by Measuring the Relative Gene Expression Changes Ku80, Ligase1 and P53
Background: Some operating room personnel are occupationally exposed to genotoxic agents such as anesthetic gases and ionizing radiation. Adaptive response, as a defense mechanism, will occur when cells become exposed to a low dose of factors harming DNA (priming dose), which in the subsequent exposure to higher dose of those factors (challenging dose), show more resistance and sensibility.. <b...
متن کاملAssessment of adaptive response of gamma radiation in the operating room personnel exposed to anesthetic gases by measuring the expression of Ku 80, Ligase1 and P53 genes
Introduction: Staffs of operating room are continuously exposed to anesthetic gases and ionizing radiation. Adaptive response, as a defense mechanism, will occur when cells become exposed to a low dose of factors harming DNA that causes in the next exposures to higher doses o...
متن کاملEvaluation of the Validity of a Nonlinear J-Shaped Dose-Response Relationship in Cancers Induced by Exposure to Radiofrequency Electromagnetic Fields
The radiofrequency electromagnetic fields (RF-EMFs) produced by widely used mobile phones are classified as possibly carcinogenic to humans by International Agency for Research on Cancer (IARC). Current data on the relationship between exposure to RF-EMFs generated by commercial mobile phones and brain cancer are controversial. Our studies show that this controversy may be caused by several par...
متن کامل